We believe in looking after our employees and clients and working together to ensure that we leave a legacy to be proud of.
We provide innovative solutions to overcome some of our industry’s most challenging and complex problems.

The Carey Way... It’s who we are

We understand that how we deliver something is as important as what we deliver.

Whether undertaking design and build contracts or working as a specialist subcontractor, we believe in delivering on our promises. We invest in the latest technologies and training to enable our teams to achieve sector-leading standards across the UK and Ireland.

Our teams have played an integral part in the construction of basements and superstructures, developing inspirational landscapes and building reliable infrastructure across a wide range of sectors. No matter how big or how small the job, our teams will deliver it the Carey Way.
Delivering innovative services...
Through our self-delivery model

Enabling and Infrastructure
- Demolition, including façade retention works through Carey Group company, Scudder Demolition
- Asbestos identification and removal through Carey Group company, ION Environmental
- Site clearance and materials processing
- Ground remediation, major earthworks and de-watering schemes
- Design and installation of complex temporary works schemes through Careys Design Team

Substructures and Basements
- Design and installation of foundation engineering works
- Complex basements and substructions, using both top-down and conventional methodologies

Superstructures
- Complex superstructure packages, including installation of in-situ reinforced concrete, post-tensioned concrete and pre-cast concrete structures
- Architectural-quality, exposed concrete finishes

Hard and Soft Landscaping
- Outstanding public realm works including hard and soft landscaping

Our investment enhances our capabilities, growing the skills of our people and enabling us to overcome ever more complex challenges for our clients.
What makes us different...
Design-led Innovation

Careys Design Team was established at the beginning of 2014 and built on the Group’s existing pre-construction capabilities. It now provides skilled engineering and design support.

This enables many of our projects across the Group to benefit from the innovation they inject and maintain tighter control of internally delivered temporary works designs, external permanent works commissions, quality and cost.

Careys Design Team offers a range of complementary services for our teams, including:

- Construction Process Design
- Construction Method Simulations
- BIM Modelling and Data Integration
- CGI Method Statements
- Ground Modelling
- Cut and Fill Analysis
- Logistics Planning
- Virtual Reality

The CGI created at pre-construction stage and the subsequent photo of 22 Bishopsgate show the planned logistics on this jumpform project, where the self-erecting rig was the first of its kind to be used in the UK.
Carey Group’s diverse range of specialist construction and resource recovery services complement each other and integrate effectively to meet project challenges.

A family of businesses...
Working together

Careys Design Team
Using technology to enable our clients to take projects from concept to reality in a quicker, safer and more cost efficient way.

BDL Dry Lining
One of the UK’s largest specialist dry lining contractors delivering exceptional standards of commercial and residential dry lining.

ION Environmental
Providing excellence in asbestos identification and removal by delivering compliant and high-quality solutions.

Careys New Homes
Our family-focused home builder that specialises in new build developments in desirable locations across southern England.

Scudder Demolition
Our specialist demolition, deconstruction and civil enabling contractor setting the standards in demolition since 1924.

Seneca Resource Recovery
One of the UK’s largest exporters of refuse derived fuel specialising in production, brokerage and international export, and facilitating 100% diversion from landfill.

Careys Foundation
Positively impacting communities across the UK and Ireland through charity and volunteering initiatives.

Careys Plant & Fleet
Acquisition, maintenance and deployment of over 2,000 items of specialist equipment and machinery to support our self-delivery capability.

Our teams worked closely at Lots Road Power Station to unlock the history of the Grade II listed structure and enable its transformation into a prestigious residential development.
The V&A Museum of Design located on the River Tay, is the centrepoint of a £1 billion waterfront regeneration project and was one of the most prestigious and challenging projects awarded in the UK in 2015. Careys Civil Engineering is undertaking all sub and superstructure works on the project, in addition to the installation of the site’s infrastructure, including underground services, drainage and hard landscaping. Our works also include foundations, temporary works and reinforced concrete cores.

Our team identified that the complex geometry of the concrete walls meant that the standard techniques for setting out were insufficient and required our team to undertake this using a 3D model. Achieving the consistency of the 2,300m³ highly pigmented dark grey concrete was challenging, as it was essential that the mix, consistency and strength were exact. To ensure this was correct, our team undertook a number of trial mixes at the beginning of the project.

Our team installed between 800-1,000m² of peri formwork and falsework each month to support the complex geometry of the structure, forming the concrete to the shape and size specified by the design. Another challenge arose during the installation of the 3m wide, 18-tonne precast feature stairs. As these had to be installed as a single unit, we introduced voids to reduce the weight of the concrete, making it possible for us to position them safely.

As part of our commitment to the local community, we have employed a number of local students and apprentices. In addition, we mentored local high school students as part of Go4SET, an initiative that links school pupils with employers and universities to offer ten-week Science, Technology, Engineering and Mathematics projects.
The Edinburgh Airport Extension – Phase 1 is part of an £80 million, 14,700m² terminal expansion to Edinburgh Airport. BAM Construction has been appointed by Edinburgh Airport Ltd. to deliver the first phase of their Terminal Expansion Project with Careys Civil Engineering delivering the groundworks, substructure and hard landscaping package for the project, which involves 1,400m³ of substructure concrete, drainage and a 17,000m³ bulk excavation.

Our works were undertaken in a live operational environment including both landside and airside works. The main terminal extension was constructed in a newly formed landside area with the East Pier and nodes for the new aircraft airbridges constructed airside. Our works included drainage, installed open-cut, at depths of up to 2.5m, and a new electrical pit and duct system.

Airside works took place at the head of the existing stands which have remained operational during construction. The adjacent airside road also remained live as it was the main route to the Eastern apron and Security Post 4.

Live airfield electrical and communication services which existed primarily in the pits, ducts and occasionally in the soft ground/grass were not surrounded with sand/gravel or warning tape. These uncharted services within the ducts included Airfield Ground Lighting, AGL, which was only energised when AGL lighting was operational.

Where no option was available other than to expose and work around the live services, our team followed our own service protection process, which exceeded the requirements of both Edinburgh Airport and BAM, providing a suitable methodology to reduce the risk to operatives and services.

The additional measures ensured as a minimum, every supervisor managing the excavation process held a qualification in service detection (NVQ 3) and attended our internal service protection course at our training academy in Milton Keynes.

Client
Global Infrastructure

Location
Edinburgh, Scotland

Principal Contractor
BAM Construction

Value
£2.9 million

Groundworks

Drainage

Landscaping

Substructure Works

Client
Global Infrastructure

Location
Edinburgh, Scotland

Principal Contractor
BAM Construction

Value
£2.9 million

Groundworks

Drainage

Landscaping

Substructure Works
Careys Civil Engineering delivered works at Kings Gate House as part of the larger regeneration of Victoria. Comprising two 14-storey buildings with a basement that accommodated a UKPN substation and spanned the entire site. Our scope included sub and superstructure works, excavation, groundwork, and the installation of associated drainage and services. Subsequent to the completion of our works, Carey Group company BDL Dry Lining was contracted to deliver dry lining works for the project.

4D modelling developed by Careys Design Team was crucial in coordinating the enabling work for the deep excavation and basement construction work, where the major challenge was the correct sequencing when working in areas of both conventional excavation and top-down construction.

Our team carried out enabling works to the existing basement box, including removal of foundations, probing and removal of obstructions along the secant pile wall prior to the piling. These works also involved the probing of new pile locations, the formation of the perimeter capping beams, temporary works with the bulk excavation, construction of the basement slabs, tower crane base and the installation of lightning protection.

The western building comprised two areas requiring traditional open sky excavation. Due to site logistics and the requirement to hand over a section of the basement to UKPN early, we constructed this area first using a contiguous piled wall in conjunction with steel sheet piles, steel waling and two levels of props. We constructed the east block using a top-down methodology to enable early installation of the isolation bearings under the floating ground floor slab and construction of the superstructure above.
Careys Civil Engineering worked alongside Careys Design Team and Scudder Demolition as principal contractor on this 2.3 acre Central London project that entailed the demolition of the decommissioned Royal Mail head office, excavations, complex temporary works to the substructure, and the construction of two superstructures. The site bordered Oxford Street and Tottenham Court Road, requiring careful logistical planning and monitoring of noise and vibration levels.

The first stage of this large-scale and complex project saw our team undertake top-down demolition of an existing seven-storey Royal Mail building by hoisting 45 tonne demolition excavators by crane onto different levels of the building. The entire building was then deconstructed leaving just the external walls of the two-storey basement. Given the size and scale of the building, we supported the walls with in-situ reinforced concrete raking props as opposed to the more traditional steel props, which would have provided insufficient structural support.

Our excavation works entailed the removal of 40,000m³ of material, and took place alongside enabling and piling works which were carried out ahead of the construction of the superstructures. The piles were approximately 40m deep and created the structure of the new basement. The eventual construction of the substructure and bringing the building back up to ground floor level required an enormous 25,000m³ of reinforced concrete, with construction of the superstructures requiring a further 15,700m³.

The superstructures themselves comprised of two multi-purpose buildings, seven and nine storeys high, which provided office, residential and retail space for the client. Due to the Central London location just off Oxford Street, the area surrounding the site was extremely busy with shoppers and tourists, requiring our teams to undertake comprehensive noise and vibration monitoring to ensure that the impact and disruption to the local area was minimised to safe and appropriate levels.

Careys Design Team played a crucial role in enabling site operations, developing a bespoke gantry solution and undertaking swept path analysis and BIM Modelling to facilitate the logistical operations of the site teams.
Careys Civil Engineering was contracted to construct a new high school in Oban to transform the learning experience of students and teachers having to use temporary cabins as additional classrooms. Our team undertook site enabling works, construction of foundations, installation of drainage and formation of the ground floor slab and three upper floors requiring more than 2,700m³ of concrete. Following these works, we undertook an extensive package of hard landscaping works and construction of a new car park.

Situated in a live urban environment, we undertook works alongside an active school, MUGA pitch, live public footpath and in close proximity to a local housing estate. Our team was responsible for exterminating a patch of Japanese knotweed on the site, in addition to protecting a small waterway which bisected an area of the site.

Our work began with the clearance of a former playing field, and diversion of a small stream and public footpath to enable future works. We constructed a reinforced concrete retaining wall at the MUGA pitch, pad foundations, beams, piles, lift pits and approximately 2,600m of site drainage, including an attenuation tank.

During Phases 2 and 3 of the project, we installed pop-up drainage and completed concrete pours to construct the ground and upper floor slabs, in addition to hard landscaping works around the building which entailed the laying of approximately 1,000m³ of fresh topsoil, fire main excavations, more than 3,000m of kerbing, steps, street furniture, 13,000m² of surfacing works and 2,000m² of monoblock car parking space.
At Millerhill, we were contracted as a specialist civil engineering subcontractor to undertake the earthworks, concrete works, and installation of foul and storm drainage, service ducts, earthing and lighting protection, infrastructure, blockwork and structural steelwork for the substation.

Works commenced in October 2016, with our team undertaking excavation works in excess of 10m deep to construct the facility’s new waste bunker. We undertook this in accordance with specifications provided by a specialist geotechnical designer, with testing that included plate bearing and cone penetration tests, density testing and CBR. Once completed, we constructed the waste bunker using a slip-form methodology to provide a more cost-effective solution for our client.

We also undertook detailed planning over three stages of slipforming to manage significant increases and decreases in the resources required. We used a 52m concrete pump to complete all pours on the waste bunker and our team used local concrete plants to ensure we met the milestones set by HZI. Subsequently, we installed the services and drainage for the site.

Due to the time saved by our team during the formation of the foundation slab, the follow-on trades were able to begin six weeks earlier than originally scheduled, reflecting our ability to successfully overcome challenging programmes.

Careys Civil Engineering was contracted to construct a new mechanical treatment plant and 14MW Energy from Waste (EfW) facility designed to process approximately 155,000 tonnes of waste per annum. The project, entailing extensive infrastructure and superstructure works, has received the prestigious Gold RoSPA Health and Safety Achievement Award for excellent health and safety standards.
PROJECT – INDUSTRIAL

KYLEAKIN HATCHERY, ISLE OF SKYE

Careys Civil Engineering was contracted to undertake works on a salmon food production facility consisting of multiple buildings located within an active quarry. Our team was responsible for installing pilecap and ground beam foundations, internal and external drainage, a Sustainable Urban Drainage System (SUDS) pond, ground floor slabs, reinforced concrete walls, basement dewatering and substructure works, and structural toppings.

Our team began works with the installation of pilecaps for the main process building, before undertaking dewatering around the basement and constructing the basement floor, walls, and capping slabs which included the application of spray based waterproofing to the secant piled walls. Following this, we constructed liquid storage slabs and tank plinths, structural toppings to the main process building upper floors, external ground floor slabs and the SUDS pond.

Due to the remote location of the site our team faced potential disruption to material deliveries and site accommodation. To overcome these, we ordered in bulk and deployed our own ‘Bunkabin’ cabins to provide suitable living arrangements for the site team.

Our team also successfully completed the challenging installation of 15 sets of bolt assemblies, each with over 100 bolts, on the raw material silo building with zero non-conformances. These large bolts measured approximately 1m in length, were set into a circular bolt jig measuring 10m in diameter. The tolerance on the bolts was +/- 5mm global deviation and +5/-0mm in height, requiring exceptional levels of performance from our team to set out and cast.

Ultimately, our team managed to complete the project in advance of the projected date, altering the basement wall formwork to carry out the wall pours in less stages and we poured the walls in a sequence which enabled us to complete the capping slab falsework earlier than programmed.

Client
Marine Harvest

Location
Kyleakin, Isle of Skye

Principal Contractor
Robertson Construction

Value
£5.8 million

Drainage
Piling
Foundations and Capping Beams
Substructure Works

[Image of Salmon Hatchery]
The Murray Royal Hospital development had an objective to deliver new, fit for purpose, mental health facilities to Perth and to Scotland in general. The development is taking place on the site of the existing facility which is kept live during the construction of the new facility; significantly adding to the logistical complexity of the project.

Our team undertook a 70,000m³ bulk earthworks excavation, followed by lime stabilisation underneath the building footprint. Once completed our team installed site drainage and underground services. In addition to this the contract required the installation of drainage up to 7m deep, ground floor slabs of approx 32,500m², upper floors on metal decking of approx 10,000m² and reinforced concrete walls ranging from 1.2m to 7m high.

In addition to these works, we were also responsible for an element of road construction, car parks and footpaths across the site. Finally, all external works, including preparatory work for soft landscaping and all hard landscaping fell under our remit.

The project was ultimately a great success, providing the local community with a range of essential services including 183 single-occupancy rooms, a mixture of adult acute mental healthcare and rehabilitation facilities, and outpatient and clinical support services.
Careys Civil Engineering was awarded multiple packages at the Principal Place residential scheme entailing the construction of several buildings, including the 50-storey Principal Tower, as well as the basement which ranges between two and four levels across the site, in addition to groundworks, enabling works and piling attendance.

Due to the tight site footprint, Careys Design Team (CDT) developed a hybrid basement solution; part top-down and part open-cut construction. CDT used 3D modelling to demonstrate how our methodology, combined with the use of our telescopic clamshell excavators, could allow us to overcome the site’s logistical complexities. The top-down element released a 50 storey tower containing high-end residential apartments.

Our team formed the vertical elements of the structure using a bespoke jumpform system, enabling us to jump the columns together with the main core and save ten weeks across the programme. The post-tensioned slabs were formed below the jump system, within a perimeter protection screen. In addition to the main Principal Tower, the project also comprised two, low-rise structures (13 and 5 storeys) for affordable housing.

During delivery of the works, our team overcame multiple challenges including the installation of a crane base close to TfL assets and the incorporation of a permanent works column into the foundation. Multiple visits by the client resulted in excellent feedback on the quality and standards of safety encountered throughout the site - especially on the jumpform rig itself.

Due to the tight site footprint, Careys Design Team (CDT) developed a hybrid basement solution; part top-down and part open-cut construction. CDT used 3D modelling to demonstrate how our methodology, combined with the use of our telescopic clamshell excavators, could allow us to overcome the site’s logistical complexities. The top-down element released a 50 storey tower containing high-end residential apartments.

Our team formed the vertical elements of the structure using a bespoke jumpform system, enabling us to jump the columns together with the main core and save ten weeks across the programme. The post-tensioned slabs were formed below the jump system, within a perimeter protection screen. In addition to the main Principal Tower, the project also comprised two, low-rise structures (13 and 5 storeys) for affordable housing.

During delivery of the works, our team overcame multiple challenges including the installation of a crane base close to TfL assets and the incorporation of a permanent works column into the foundation. Multiple visits by the client resulted in excellent feedback on the quality and standards of safety encountered throughout the site – especially on the jumpform rig itself.
Careys Civil Engineering is currently engaged as Principal Contractor to deliver a multi-phase package of works for the Graven Hill Village Development Company. Once completed, the Oxfordshire site will comprise 1,400 homes along with infrastructure and varying classifications of retail and entertainment structures. Our team has successfully completed Phase 0 ‘The Demonstrator’ and is proceeding with Phase 1A, comprising earthworks, drainage, road installation and varying landscaping works.

Phase 0 works commenced in March 2016, the purpose of which was to showcase the buildability of the scheme and devise solutions for any potential issues prior to main works starting in Phase 1. Following successful completion of this phase, we were awarded the contract for Phase 1A, which commenced the construction of a balancing pond, the installation of 240 manholes, 19km of drainage and 22,000m² of varying surface finishes which were completed in late 2017.

Our team was also awarded a two-year contract to deliver landscaping works, including Section 38 works comprising the design and build of roads of varying makeups, installation of street furniture and lighting and a £1 million contract to deliver construction of woodland play areas, ponds, viewing decks, boardwalks and bridges.

As part of our value engineering works, testing is being carried out on multiple sections of the route to determine the most cost-effective use of construction materials. In addition to this, the site team is using engineered fill to negate the use of 39,000m³ of imported quarried material.
Careys Civil Engineering has been contracted on an extensive package of riverside landscaping works in Reading, comprising enabling works and hard and soft landscaping across the pavilion and events area of the Oracle. These works have required meticulous attention to detail and careful planning to ensure works were carried out to the highest standards of quality.

Our works entailed the formation of a new pavilion and kiosk for the area and included reconfiguration and alterations of the public realm across the site. The client’s design comprised of the new pavilion to the north of the river, adjacent to a curved bridge which was installed by our team.

The close proximity to the River Kennet required our team to develop detailed risk assessments and a methodology which minimised operatives exposure to the riverfront. In addition to this, we installed water protection measures to prevent waste material created by our work from entering the watercourse.

The high-quality materials used throughout the project were laid to a precise tolerance, transforming the area with new cladding, paving and soft landscaping. In addition to these works, our team was responsible for installing feature lighting, balustrades, service trenching and service connections throughout the area.
Careys Civil Engineering was awarded the design and build contract to construct a precast encapsulation structure over the existing Docklands Light Railway (DLR) lines at Bank Station exit tunnel. The completed structure extended for approximately 150m from the tunnel face. Our detailed pre-construction planning was crucial to ensuring safe working in the live rail environment, overcoming tight site boundaries at one of London’s busiest interchange stations.

Our team constructed the encapsulation structure including piled foundations, precast concrete wall panels, along with a precast T-beam roof structure. We were also responsible for the construction of new escape platforms within the encapsulation structure, along with diversion and installation of services. In addition to this, we constructed a dedicated mechanical room on top of the encapsulation, housing smoke evacuation fans to service the tunnel in the event of a fire on the DLR.

As part of the enabling works for the site, our team part-demolished the local underground railway viaduct, retaining the overground structure which remained in use during our demolition works. To prevent impact on the live railway, we undertook real-time monitoring of engineering works and overnight work on sensitive elements of work such as services.

In addition to the live environment and national rail viaduct, one of the site boundaries contained a section of London’s cycle superhighway, and the main entrance was situated on a one-way street. To overcome the potential risk to the public, we implemented various measures including careful traffic management, screens and auger protection to avoid spoil affecting the local area or railway, and the use of innovative piling techniques to avoid lateral pressure which could affect existing structures.